
How Unicode Came to
"Dominate the World"

Lee Collins
18 September 2014

Overview
• Original design of Unicode

• Compromises

• Technical

• To correct flaws

• Political

• To buy votes

• Dominates the world

• But is it still “Unicode”

Why Unicode
• Mid-late 1980s growth of internationalization

• Spread of personal computer

• Frustration with existing character encodings

• ISO / IEC 2022-based (ISO 8895, Xerox)

• Font-based (Mac)

• Code pages (Windows)

Existing Encodings
• No single standard

• Different solutions based on single language

• Complex multibyte encodings

• ISO 2022, Shift JIS, etc.

• Multilinguality virtually impossible

• Barrier to design of internationalization libraries

Assumptions
• Encoding is foundation of layered model

• Simple, stable base for complex processing

• Characters have only ideal shape

• Final shape realized in glyphs

• Font, family, weight, context

• Character properties

• Directionality

• Interaction with surrounding characters

• Non-properties

• Language, order in collation sequence, etc.

• Depend on context

Unicode Design
• Single character set

• Sufficient for living languages

• Simple encoding model

• “Begin at zero and add next character” — Peter Fenwick of BSI at Xerox 1987

• No character set shift sequences or mechanisms

• Font, code page or ISO 2022 style

• Fixed width of 16 bits

• Encode only atomic elements

• Assume sophisticated rendering technology

• a + � + � = �

• � � � � � = ��

Early Strategy

• Unicode as pivot code

• Interchange between existing encodings

• Focus on particular OSs

• Xerox, Mac, NeXTSTEP, Windows

• Build libraries to bootstrap adoption

• Character set converters

• Drivers to read and write Unicode files

• Fonts and rendering

• TrueType, QuickDraw GX

Plain Text Debate
• Test to determine atomicity of related characters

• No agreed criteria for application

• Han requires multiple fonts to achieve same
effect as Greek and Coptic

• Used to bypass original model

• Alternative is variation selectors

Before Standardization
• Character set standard bodies

• Dominated by large, established companies and governments

• IBM, DEC, HP, Honeywell

• JIS, GB

• Very formal process

• Unicode informal meetings

• Word of mouth

• Engineers from Xerox, Apple, Metaphor, NeXT, RLG, Sun

• “No stinking process”

• Uncontrolled debate and agenda

• Legal issues?

• Let the standards guys come to us

ANSI X3L2
September 1988

• Unicode to ISO

• You guys got it all wrong, start over with Unicode

• Critique of ISO 10646

• No Han-Unification

• No character composition model

• Bidi-model

• Complexity of shifting between planes

• Began a long period of heated debate

• X3L2 eventually supported Unicode

• Members used global influence

• Unicode now involved in ISO 10646 standardization process

Key Disagreements
• Han Unification

• 10646

• Independent sets for China, Japan, Korea

• Left out Hong Kong and Taiwan

• Composition

• 10646 explicitly rejected combining marks

• Outcomes seriously affected Unicode

Han Unification
• Corollary of the Unicode character model

• Ideal shape

• Basic properties do not include

• Inherent language

• Position in collation sequence

• Reading, etc.

• Saving code points was nice side effect

• Esp. considering extensions

Reaction to Unification
• China

• Parallel unification effort under Zhang Zhoucai

• Japan

• Very controversial

• Why are gaijin telling us how to encode our characters?

• Some supporters, esp. librarians (NACSIS)

• Korea

• Ambivalent

• Taiwan

• Mostly supportive

• Already encoding Chinese and Japanese forms in own standard

• Vietnam

• Yes, but add Ch� Nôm

Closure on Unification
• Role of IBM

• Cooperation between Unicode and China

• Validation by Prof. Nakajima

• Helped bring Japan to table

• Formation of CJK-JRG

• Japan a reluctant participant

Outcome of Unification
• Unification model

• Round-trip mapping rule

• Many exceptions to unification model

• Need to look at source set to understand

• 說 kIRG_TSource = T1-6B29

• 説 kIRG_TSource = T3-4966

• Spawned creation of ad-hoc “standards”

• On-going standardization via IRG

Composition
• Cultural reaction

• Europe: ä is a letter in my alphabet

• Needs single code point

• India: � is an ak�ara in the var�am�l�

• I know it’s composed

• East Asia: Any blob surrounded by space is character

• Technical objections

• Too hard too implement

• Performance and storage

Composition Outcome?
• Both forms allowed

• For some scripts

• Cultural reactions dominated

• Roman, Greek, Cyrillic

• Korean, Vietnamese

• Tibetan

• Chinese wanted full composition

• Additional normalization requirement

Unicode - ISO 10646 Merger
• Cost to Unicode

• Loosening of principles

• More complex process

• Critical for success

• Authority of ISO standards

• adopted by governments and businesses

Extending Code Space
• Originally fixed-width, 16-bit

• Feasible based on original model

• Less viable after compromises

• 11K Korean hangul

• IRG started allowing large # of variants

• Ancient scripts

Surrogates
• 1996

• Solved the encoding space problem

• Simple, fixed-width?

• No

• Need to test value and get next surrogate

• Yes

• Surrogate pairs = 2 fixed-width codes points

• Unique: no scanning to determine value

• Works, but complicates the original layering model

UTF-8
• Pike and Thompson 1992

• Solution for existing systems and languages

• 8-bit safe

• esp. null and /

• No endian issues

• Multiple width, but self-synchronizing

• Easy to determine position in string

• Critical to adoption and spread of Unicode on the Web

• Most Unicode data on web is UTF-8

Java

• 1995

• 16-bit Unicode characters

• Unicode-based string class

• Main language for web services

ICU
• IBMs portable open-source i18n library

• Came out of Pink and Taligent

• Ported to Java

• Base for Java’s i18n support

• Facilitated adoption of Unicode

• Hides dirty details

• Rich set of features

• Now basis for i18n in many places

• OSs, languages, web services, etc.

CLDR
• Unicode-based locale data

• Date, time, number formats…

• Raw data for ICU

• Open source

• Contributors encouraged

NeXTSTEP

• 1988 - 1996

• Rich set of Unicode classes

• Factor in Apple’s choice of NeXT over BeOS

• Morphed into Mac OSX and iOS

Windows NT
• 1993

• First major OS with Unicode support

• Internal encoding

• Continued in later releases

• XP, Vista, 8, etc.

Growth of Web
• 1990s

• Explosive demand for local language support

• Unicode support in search engines, browsers

• Webkit

• W3C standards

• Unicode recommended as default for XML and HTML

• Unicode now 80% of Web data?

Internet Services
• Early 2000s

• Social media

• Facebook, Twitter

• Video sharing and streaming

• YouTube, Netflix

• Music

• iTunes

• Finance

• Paypal

Smart Phones
• 2007 iPhone revolution

• Mobile computing power

• In hands of people everywhere

• Esp. non-PC users

• Everyone using iOS, Android, WP is using Unicode

• Texting, tweeting, browsing, connecting with
friends…

Emoji
• Most exciting Unicode event in recent years

• Universally popular

• Driven by smart phones

• PR for Unicode

• And some controversy

• Outside of BMP

• U+1F5FB…

• Pressure to support full Unicode (surrogates)

• SMP: No longer rare characters

Current Challenges

• Competing standards

• Implementation issues

Competitors
• China

• Government pushing local standards

• GB 18030, GB/T20524-2006, etc.

• Internally can use Unicode

• Local OSs: Kylin, Red Star

• Japan

• TRON

• OS for everything:

• Appliances, feature phones, etc.

• Limited to Japan

Implementation Issues
• Clumsy support in some popular programming languages

• Not default

• Surrogate support

• Old mail SW

• Esp. Japan

• Incorrectly tagged web content

• Lots of minor variants

• �, �, �, �…

• Need normalization for any search

Outlook
• China’s massive web presence could change things

• If local systems and services move to GB

• Implementation issues

• Solvable

• Esp. given pressure to support Emoji

• New languages like Apple’s Swift provide hope

Is it still Unicode?

• Universal

• Uniform

• Unique

Universal
• Does it fill needs of world languages?

• Yes

• Can’t claim all, but certainly most

• New scripts and characters for languages
being added

• Living and dead

Uniform
• Fixed-width for efficient access?

• Yes and no

• UTF-32

• Original meaning of fixed-width

• UTF-16

• A pain to iterate character by character

• UTF-8

• Not fixed-width, but self synching

• All are improvements over Unicode’s predecessors

Unique

• Single interpretation of bit sequence

• Yes

• Once you identify the form

Conclusion
• Wildly successful

• Has changed greatly

• Big, complex, messy to implement

• Library and language support critical

• Challenges remain

• Unlikely that growth of adoption will change

